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or smaller than the corresponding two-beam gap. For a 
given sign of the deviation parameter, the direction of 
the fringe bending is found to depend on the sign of the 
product between the three structure factors involved in 
the three-beam calculations. This effect may thus be 
utilized to determine three-phase structure invariants 
experimentally. In structure work, however, the method 
may at the present stage of development only be 
applied in a limited number of cases as relatively large 
single crystals are needed. 

To determine the branches which contribute most 
strongly to the intensity the calculations of excitation 
coefficients have proved to be essential. Only the four 
branches, which correspond to the ones in the 
two-beam case, are, through such calculations, found to 
be of importance. These branches contribute to the 
intensity oscillations in pairs corresponding to the a 
and n components. The present calculations therefore 
show that polarization contributes in the usual way to 
the fading, but are not essential for the interpretation of 
the three-beam effects studied. 
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Abstract 

A general theory is developed for kinematical scattering 
by crystals with lamellar domains, having two equal 
lattice translations b and e which form a congruent 
plane of intergrowth. The domains differ in the lattice 
constant a, electron density distribution, and inter- 
domain distances. The size of the domains is described 
by arbitrary statistical distribution functions and the 
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scattered intensity is calculated by forming the Patter- 
son function and its Fourier transform. Examples with 
two types of domains are discussed. 

1. Introduction 

A great number of electron microscopic and X-ray 
investigations deal with crystals with planar faults due 
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to exsolution processes or phase transitions. In order to 
understand the fault structure of these crystals it is 
necessary to calculate the diffuse scattering. 

For this problem many theories have been developed 
(Wilson, 1942; Jagodzinski, 1949a,b,c; Kakinoki & 
Komura, 1952, 1954a,b; Cowley, 1976). In these 
theories it is assumed that the crystal consists of a 
certain number of different layers. Mathematically, the 
disordered structure is described by introducing a 
priori probabilities for the occurrence of a certain layer 
and assuming probabilities for a fault. The second 
variable describes the probability that, for instance, a 
layer of type i will be followed by a layer of type j. 
With either the so-called difference-equations method 
(Wilson, 1942) or the equivalent matrix method 
(Hendricks & Teller, 1942) or the direct calculation of 
the Patterson function (Cowley, 1976) it is possible to 
calculate the scattered intensity from the probabilities 
mentioned above. 

A different approach to the calculation of the 
diffraction intensity of a disordered structure is to 
describe neighbouring layers of type i as one domain of 
type i. For this method, which was first used by 
Houston & Park (1970, 1971) to calculate the 
scattering of antiphase domains, the statistical distri- 
bution function of the various domain sizes occurring 
in the crystal is of great importance. If, for instance, a 
crystal consists of a sequence of two types of layers, i 
and j, and if a is the probability that an i layer will be 
followed by a j layer, then a layer of type i will follow 
again with a probability of (1 - a). The probability that 
a domain of type i consists of three different layers is 
( 1 -  a) 2 etc. Fig. l(a) demonstrates that one prob- 
ability for a fault leads to an asymmetric domain size 
distribution relative to the average domain size 1/a. If 
we want to describe a symmetric distribution function 
with probabilities (see Fig 1), it is necessary to 
introduce several probabilities for a fault, generally up 
to the layers in the distance of the maximum domain 
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Fig. 1. Distribution function w(F) of the domain sizes and averaged 
grating function G(x) (equation A2) for two examples. 

size. Although Jagodzinski (1954) has shown that it is 
possible to solve even these cases, the mathematical 
difficulties grow rapidly with increasing domain sizes, 
owing to the increasing number of probabilities for a 
fault. 

This problem does not arise when describing the 
disorder by a domain size distribution, because the 
number of parameters does not depend on the domain 
size. Furthermore the influence of different types of 
distribution functions on the diffuse scattering can be 
studied easily. In this work we present the calculation 
of the scattering of a crystal with an arbitrary number 
of lamellar types of domains. The sequence of the K 
different domains is cyclic, so that each domain has the 
same a priori probability of occurrence. Most frequent- 
ly we have to deal with a crystal consisting of two 
types of domains. But it is possible that at the domain 
boundaries structures arise which differ from the two 
types of domains and then we generally have four types 
of domains. It should be noted that domain boundary 
structures consisting of only one layer can also be 
treated as a 'domain'. 

2. Theory 

A domain D k of type k consists of a certain number of 
equal unit cells, characterized by the cell constants a k, 
b, e and the electron density distribution Pk of a unit 
cell. Different domains of the same type k may have 
different domain sizes ak.F k. The statistical distri- 
bution of these sizes is described by the domain size 
distribution function wk(/-). Furthermore, it is assumed 
that the sizes of adjacent domains are uncorrelated, 
thus the different domain size distribution functions are 
statistically independent. The domains of different 
types vary in a k and F k, but they have the same lattice 
constants b and e (congruent plane of intergrowth). For 
an infinite crystal scattered intensity can therefore only 
be observed on lattice rods perpendicular to b and e. 
Along these rods we can detect the disorder scattering 
which is caused either by differing lattice constants a k 
or electron densities Pk or both. 

The crystal consists of a cyclic sequence of K 
different types of domains. The domains of type 1 to K 
will be combined to a domain group characterized by 
the index l (Fig 2). A special domain Dk, t of type k 
within the group l is characterized by a grating function 
Gk, t(r), the electron density pk(r), and the domain 
distance d k. Since b and e are constant, we can omit the 
lattice sum along these directions and get the following 
domain function: 

Ok, l(r ) : Gk, l(r) . Pk(r), (1) 

where 
Fk, t 

Gk, l(r) = ~ ~ ( r - -  Yak). 
v = O  
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The s y m b o l ,  stands for the convolution integral, 

f ( r ) ,  g(r) = f f ( r -  r ' ) g ( r ' )  dr'. 

From (1) the electron density p(r) of the entire crystal 
can be written as 

p(r) = ~ ~ Dk, t ( r -  rk, t). 
k l 

In order to get the scattered intensity we first form the 
Patterson function P(r) per domain group. 

LP(r)  = p ( r ) ,  p ( - r ) ,  

where L is-the total number of domain groups and 

f ( r ) ,  g(--r) = f f ( r  + r ' )g ( r ' )  dr'. 

2.1. Two types o f  domains 

Because of the importance of this case we want to 
calculate its Patterson function first. The electron 
density is 

p(r) = Dl ,  l ( r - -  rl,1) + D 2 , 1 ( r -  r2,1) + D i , 2 ( r -  rl,2) 

+ D 2 , 2 ( r -  r2,2) + .. . .  

The Patterson function P(r) contains all pairs of 
domains. We sum up all pairs that are separated by an 
equal number m of domain walls and contribute to P(r) 
for r > 0. For m -- 0 we get 

Dl,t(r) * Dl.t(--r) + ~. D2,1(r)  * D2,/(--r). 
l l 

In this sum always the same type of domain occurs and 
therefore it can be replaced by the average value 

{ ( D l , / ( r ) ,  D1,/(--r))  + (D2,t(r)  , D2,1(--r) ) } L. 

Since the electron density pk(r) is independent of the 
actual domain length we must only average the term 
with the grating functions and we get, with (1), 

Ok(r ) = (Dk, t(r ) * Dk,/(--r) ) 

-=- (Gk, t(r) , Gk.t(--r)) , Pk(r),  pk(--r), (2) 

with 

(Gk.t(r) ,  Gk, l(--r) ) = f Gk(r) .  Gk(--r)Wk(1-)dF. 

1,11 ...'" 
..." 

Fig. 2. Arrangement of domains of different types, rk. l is the origin 
of the first unit cell in a domain Dk. I. 

For m = 1 we have the contributions 

(G2,t(r  -- r2,t) • G l , / ( - r -  r l , t ) )  • P2(r) • p l ( - r )  

+ (GI,I+ 1( r -- rl,t+ 1) * G2, l ( - - r - -  r2,/)~ 

• pl(r) • pE(-r). 

Substituting r2, t - rl, l by a~.F~, t + d~ (see Fig. 2) the 
grating function of the first term becomes 

(G2,t(r) . Gl, t ( - r  + al.Fl,t) ) . f i ( r -  dl). 

Now the statistically independent quantities are un- 
coupled and can be averaged separately. With the 
transformation 

Gk.t(--r + ak.[ 'k ,  l) = Gk.i(r), (3) 

the contributions to the Patterson function become 

O2.~(r) = (G2, t ( r ) ) ,  ( G L / ( r ) ) ,  ~ ( r -  dl) 

, p~(r), p , ( -r )  

and (4) 

Oi,2(r ) = (G1,t+ 1( r ) ) ,  (G2, / ( r ) ) ,  ~ ( r -  dE) 

, p1(r), p2(-r). 

For m = 2 we get 

( G I , I +  1( r -  rl.t+ 1) * Gl,t( r -  rl.t)) * P1(r) * P l ( - r )  

+ (G2,l+l(r--r2.l+ 1) • G2.1(r-- r2,t)) • p2(r) • p2(--r). 

Replacing rl,l+ 1 -- rl, / by al.Fl, t + a2.F2, t + d I + d 2 in 
the first term we can separate again the statistically 
independent quantities F~, z and F2,t. With the average 
domain size 

Bk(r) = (~ ( r - -  ak. Fk, l) ), (5) 

we get 

O~.~(r) = (a l , t+  l ( r ) ) .  (Gl,~(r)) • p~(r) ,  p l ( - r ) .  B2(r ) 

, ~ ( r -  d I - -  d2) 

and (6) 

O2,2(r ) = <a2,l+,(r)), ( a 2 , / ( r ) ) ,  PE(r), p2(--r) ,  B,(r) 

, ~ ( r -  d I - d 2 ) .  

Analyzing the contributions for m -- 3 we obtain, as in 
the case of m = 1, pairs of different types of domains. 
But the mean distance of the domain pairs is larger by 
the average superstructure period of 

R(r) = Ba( r ) ,  B2(r ) , 3(r- -  d~ - dz). (7) 

Since the average values of the domain pairs do not 
depend on l we get with (7) the contribution 

{ O1.2(r ) + O2.~(r)}, R(r). 

The analogous comparison holds for m = 4 and m = 2. 
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From (2), (4), (6) and (7) we can now impose a scheme 
for the Patterson function for r > 0. 

with 

P(r) = Ps(r) + Pd(r) . y. Rm(r), (8) 
m>_O 

Ps(r) = ~,(r) + ~2(r), 

Pd(r)  = ~b,,2(r ) + ~2, , ( r )  + ~ l . l ( r )  + ~2,2(r) 
and the m-fold convolution 

Rm(r)=R(r) , . . . ,R(r) .  

Ps(r) corresponds to the average Patterson function of 
uncorrelated domains, whereas Pd(r) describes the 
correlation between the domains. 

2.2. General formulation 

The general formulation of the Patterson function 
per domain group is 

LP(r) = ~ E E E Dk,,l,(r-- rk,,l,) * Dk . l ( - - r -  rk, t). 
k k' 1 I' 

If we substitute l '  by ! + m, for constant k, k' and m, 
the sum over l involves only pairs of the same type of 
domain. Therefore it can be replaced by a mean value 
that is independent of l. 

where 

L P ( r )  = L E E E fI)k,k,,m(r), 
k k ' m  

fl)k,k,,m(r ) : <Dk,,t+m{r-- (rk,,t+m- rk,/) } 

* Dk . l ( - - r )> .  (9) 

Now the index m sums over the various domain groups 
and we want to calculate ~k.k,,m(r) for various m. 
Because the Patterson function is centrosymmetric we 
must calculate only P(r) for r > 0 and consequently rk,,l 
- -  rk, t > 0 and k' > k in the case of m = 0 (see Fig. 2). 
For k = 0 we get, as in (2), 

~k,k,0(r) : <Gk, l(r) , Gk, l(--r)> . P k ( r ) ,  pk(--r) .  (10)  

If k' > k we introduce the substitution 

rk , , l - -  rk, l :  l"k , l .a  k + Fk+l , / . ak+  1 + . . .  + ~ k , _ l , / . a k , _ l  

+ d k + . . . +  dk,_ 1. 

Except for the domain width Fk, t all other widths are 
statistically independent of the domain functions 
Dk, t(r) and Dk, t(r) in (9). From (3) and (5) we obtain 
for k' > k 

~k,k,.0(r) = <Gk,,t(r)> • <Gk.t(r)> • Bk+,(r) , ... 

, Bk,_l(r ) . 6(r--  d k - . . .  -- dk,_l) 

, pk,(r) ,  pk(--r). (11) 

This equation contains k ' - k - 1  widths Bk(r ) and 
k' - k distances d k. 

Investigating the case where m = 1 and k' < k we get 

~k,k,. l (r)  = <Gk,,l+l(r)> * <Gk, l(r) > * Bk+ I(r) * . . .  
, B K ( r ) ,  B , ( r ) ,  . . . ,  Bk ,_ , ( r  ) 

, f i ( r - -  d k - . . . -  d K -  d I - . . . -  dk,_l ) 

• Pk , ( r ) .  pk(--r) .  (12)  

Equation (12) contains K -- (k - k ')  - 1 widths Bk(r ) 
and K - (k - k ')  distances d k. The indices of B k and d k 
must be used cyclically because k' < k. If we use the 
indices of (11) in the same way, (11) and (12) become 
identical because the average values of the grating 
functions are independent of the index l. Consequently, 
we may combine the contributions to P(r) for m = 0, 
k' > k and m = 1, k' < k as follows: 

Pal(r) = Y Y <Ck,(r)> * <Ok(r)> * Bk+,(r) • . . . ,  Bk,_,(r) 
k k' 

, 6 ( r - -  d k - - . . . -  dk ,_ l ) ,  Pk, (r) * Pk(--r). 

(13) 

If m = 1 and k' > k the number of widths in the term 
¢k,k',~ is K -- (k - k ')  - 1 > K. The number of K 
widths Bk(r ) and the distances d k can be separated and 
combined to an average superstructural period 

R(r) = B ~ ( r ) . . . . .  Br ( r  ) . 6(r - d~ - ... - d g ) ,  (14) 

and we get 

• k,k,,l(r) = Ck, k , ,0(r) .  R(r) .  

The procedure is similar for m = 2, 3, etc., so that we 
can form the Patterson function as in the case of two 
types of domains, this time with (10), (13) and (14). 

with 

P(r) = Ps(r) + Pa ( r ) .  Z Rm(r), 
m _>0 

es(r) = Y ~k,k,0(r). 
k 

The Patterson function consists of three terms: 
(i) the average Patterson function of the uncorre- 

lated domains Ps(r); 
(ii) the average Patterson function of two neighbour- 

ing domain groups Pd(r); 
(iii) the sum Em _>0 Rm(r) considering the correlation 

of all domain groups. 
After Fourier transforming P(r) we get the scattered 

intensity. For the transformed figures we use the same 
symbols as for the Patterson function except for P(r) 
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and p k ( r )  which become I(h) and Fk(h) after the 
transform, respectively. The transformed figures are 

R ( h ) =  Bl(h)B2(h) x ... x Bx(h)exp{27~ih(d ~ 

+ . . .  + d x ) }  

Ps(h) = ~ (Gk(h) G~'(h)) VkF ~ 
k 

Pd(h) = Y Y (Gk,(h)) (Gk(h)) Fk, F~ Bk+ ~(h) 
k k' 

x ... x Bk,_1(h ) exp{2~ih(d k + ... 

+ dk ,_0} .  

h = a* h + b* k + e* l is a vector within the reciprocal 
space. Because of the centrosymmetry of the Patterson 
function the scattered intensity per domain group is 

/ (h )  = Ps(h) + 2 Re  Pe(h)  . (15) 
1 - R ( h )  

Equation (15) describes the diffuse scattering and the 
Bragg scattering which occurs when R (h) = 1. 

3. Examples 

The theory developed above is exact within the 
framework of the kinematical theory, i.e. it contains no 
approximation. It makes it possible to calculate the 
scattering of very disordered as well as perfect crystals. 
The description of the domains by domain distribution 
functions allows for an investigation of the influence of 
different distribution functions. They can also be 
determined directly with electron microscopy and the 
comparison between calculated and measured inten- 
sities may possibly give additional information about 
the structure of the domain boundaries. 

Yet the following will be restricted to examples of 
two types of domains, because these occur fairly often 
owing to exsolution processes. Especially in low- 
symmetric systems, one-dimensional disorder 
phenomena can be found frequently (Champness & 
Lorimer, 1975). The Fourier transform of (8) yields 

I ( h ) =  < G , ( h ) G * ( h ) ) I F ,  I 2 + < G z ( h ) G * ( h ) ) I F  2 2 (1 
+ 2 Re {(G2(h)) (Gl(h)) F2F ~ 

1 - R ( h )  

x exp(2~ihdl) + <Gx(h)) <G2(h) > F , F *  

x exp(2zdhd2) + (G,(h)) (G,(h))IF, I 2 

× exp[27rih(d, + d2)] B2(h) + (G2(h) > 

x (G2(h))IF212 exp[27rih(dl + d2)] B~(h)}/. 
/ 

Let us first investigate the simple case where a~ = a 2 = 
d~ = d 2 = (a,0,0). Here the translation vectors of the 

domains are equal and so the domains differ only in 
their structure factors. This fault structure can lead to a 
satellite diagram. The averaged period of the super- 
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Fig. 3. E x a m p l e s  for  diffuse sca t te r ing  o f  a c rys ta l  with two  types  

o f  d o m a i n s  with cons t an t  ave rage  supe r s t ruc tu re  = 10a and  
var ious  d o m a i n  dis t r ibut ion func t ions  v(F)  (equat ion  A 1 ) . . ( a )  
v (F)  = C e x p [ - ( F  - F 0 ) 2 / 0 " 2 ] ,  where  F 0 = 5 and a = 2 for  bo th  
types  o f  domains .  C = no rma l i za t i on  cons tan t ,  F~ = 1, F 2 = 2. (b) 
T h e  dis t r ibut ion funct ion  is G a u s s i a n  with F 0 . 1 = 8 ,  a ~ = 3 ,  
F~ = 1, F0.2 = 2, a 2 = 0, and F 2 = 2. (c) The  dis t r ibut ion funct ion  
is r ec t angu la r  v (F)  = C for  ( F  0 - a )  _< F < ( F  0 + a ) ,  = 0  
otherwise .  F0. ~ = 8, a~ = 3, F~ = 1, F0. 2 = 2, a 2 = 0, F 2 = 2. (d) 
T h e  dis t r ibut ion func t ion  is G a u s s i a n  with F0. ~ = 7, am = 2, 
F~ = 1, F0.2 = 3, 02 = 2, F 2 = 2. (e) T h e  dis t r ibut ion funct ion  is an 
exponent ia l  funct ion  v(/") = C ( I  - l /F0) r. F 0 s tands  for  the 
a v e r a g e  d o m a i n  size (see Fig. 2). The  special  p a r a m e t e r s  are  
F0.1 = 7, FI = l, F0.2 = 3, F2 = 2. 
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structure can then easily be determined by the position 
of the first-order satellites. Furthermore, we are 
interested in the individual sizes and structure factors of 
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Fig. 4. Profile analysis of satellites of first and second order. 
Calculations for two types of domains with different distribution 
functions as a function of the width a~. The constant parameters 
are Fo. l = 8, F, = l, F0, ~ = 2, ~r= = 0, F~ = 2. (a) The integrated 
intensity I and full half-width W (in units of 1/a) of the satellites 
of first and second order for a rectangular distribution function. 
(b) The same as in (a), but for Gaussian distribution. 

the two domain types. If we deal with an exact 
superstructure, i.e. no variation of the domain sizes, the 
parameters mentioned above can be calculated with 
Korekawa's (1967) satellite theory or by constructing a 
supercell which equals the superstructure period. If the 
superstructure is not exact, sharp main reflections and 
diffuse scattering can be detected. The intensity 
distribution of the diffuse scattering depends mainly on 
the average size of the domains and the statistical 
distribution function Vk(1-) (equation A 1, Fig. 1). Figs. 3 
and 4 show the results of model calculations as a 
function of the width of the distribution function vk(/). 
Here Lorentzian functions have been fitted to the 
calculated profiles with the least-squares method. The 
standard deviation was always much better than for 
Gaussian functions. It is remarkable that the first-order 
satellites never have larger half-widths than 0.04a* 
despite the large widths a I of the distribution functions. 
The integral intensity decreases rapidly with increasing 
a,. This indicates that for a quantitative analysis the 
integral intensity must be corrected even if the satellite 
profiles are broadened only slightly. 

The line position of the satellites (Fig. 5) depends 
also on the width al. Thus the line position of the 
satellites is not in commensurate positions in the 
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Fig. 5. Line shift of the satellites of first and second order as a 
function of a, for the cases dealt with in Fig. 4. The quantity Ah 
is the difference between the position of the satellites in a perfect 
superstructure and the observed position. There is always a shift 
in the direction of the main reflection. 
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reciprocal lattice, although the average superstructure 
period represents an integral multiple of the lattice 
translation a. This can be explained easily by the fact 
that the position ql of the first-order satellite corre- 
sponds to the reciprocal value of the superstructure 
period P. For the case when we have a distribution over 
different periods the average line position (qz) does not 

~ " -qlm, • .!~II~, 

P2 PI 

A2 A1 

(a) 
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(b) 

A2 A1 

(c) 

0.8 0.9 1.0 1.1 

( d )  

h 

Fig. 6. (a) 004 reflection of an (hOl) Weissenberg photograph from 
a pyroxene of a lunar basalt (14053). Cu Ka~ radiation, 
cylindrically bent Ge~H monochromator, and focusing technique 
was applied (Jagodzinski, 1968). (b) Two domains with a (20i) 
plane of intergrowth and different lattice constants a~ and a 2. (c) 
Densitometer curve of the A I-A 2 reflections. The arrow in (a) 
indicates the scanning direction. (d) Model calculation where d2o i 
is equal for the two domains. Rectangular distribution function 
with.F o ,=24 ,e  t = 5 , F  I= I,~I=4.57°,Fo2=II,  e2=2, F,= 
--V/'2 + iv/'2, (a 2 ---- --3.43 o. 

correspond to the reciprocal period of ( P )  because 
1/(P) ~ ( I /P) .  That is to say, an incommensurate 
structure can be simulated by diffraction effects 
although the structural modulation is locally and 
statistically commensurate. 

The second-order satellites are already very diffuse 
at small tr~ values. At the same time, the intensity 
increases rapidly. This may be explained if the observed 

order scattering of the domains alone. First-order 
scattering of small domains and second-order scatter- 
ing of large domains overlap. This explains also the 
significant line shift. Contrary to a Gaussian distri- 
bution, extremely large and small domains are equally 
probable as average-sized domains in a rectangular 
distribution and therefore the overlap of different orders 
has more weight. This explains the larger line shift for 
this distribution function. 

An application to the case of two domains with 
different lattice constants a is shown in Fig. 6. The 
high-resolution focusing Weissenberg photograph 
(Peterat, 1981) of a lunar pyroxene demonstrates the 
well-known exsolution into Ca-poor (Pigeonit, P) and 
Ca-rich (Augit, A) lamellae (Ross, Bence, Dwoonik, 
Clark & Papike, 1970). The reflections of the Pigeonit 
and Augit lamellae are additionally split along the 
( 2 a * - c * )  direction (A1-A2, P1-P2) .  From the 
photometer curve (Fig. 6c) five maxima can be 
distinguished. The diffuse scattering along the ¢* 
direction has two maxima which can be explained by 
the scattering of two types of lamellae with non- 
collinear lattice constants e (Peterat, 1981; Jagodzinski 
& Korekawa, 1972; Dorner & Jagodzinski, 1972). In 
this case the distribution function of the domains is 
described by one fault probability and then corre- 
sponds to the asymmetric domain size distribution 
function shown in Fig. 1. 

The diffuse scattering along the (2a* - e*) direction 
looks more complex. However, it is possible to explain 
this diffuse scattering by introducing an additional 
system of only two types of domain. With an 
asymmetric distribution function a splitting similar to 
the one along the c* direction into A 1-,42 and P l - P 2  
would be observed. A symmetric distribution function 
with small values of tr leads to an almost perfect 
superstructure. This is the reason for further splitting of 
the A 1, A2 and P1, P2 reflections. The parameters of 
the distribution functions and the structure factors can 
be determined with a model calculation (Fig. 6d). It is 
also interesting to note that the width of the A 1 
reflections is determined by the width of the distri- 
bution function of the A 2 domains and vice versa. 
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APPENDIX 

For the calculation of the scattered intensity following 
equation (8), two averaging processes have to be 
performed with the computer. We would like to give 
some valuable transformations for the calculation. 

The normalized domain size distribution function is 
given by 

oo 

%(F)  = ~ Vk(/- ) 6 (F- -  n), (A 1) 
n = 0  

where Vk(F) is an arbitrary distribution function. With 
(A 1), the calculation of (Gk(r)) becomes 

<Gk(r)) = f Gk(r) wk (F)dr  

-- ~ f i ( r - - Y a k ) ~  mk(n ). 
v = O  r / = O  

The double sum can be transformed into the following 
more convenient equation" 

oo 

(Gk(r)) = Y 6(r--Yak) ~ vk(n ). (A2) 
v = O  / ' I=V 

The expression (Gk(r) , Gk(--r)) is calculated similarly. 
Following (A 1) we have 

rk 
G k ( r ) , G k ( - - r ) =  ~ ~ ( r - - v a k ) ( F  k+  1- - tv l ) .  

v = - - / ' k  

The averaging leads to 

(Ok(r) • ok(-r) )  

= Y Gk(r), G~(-r)wk(/3 d/" 

+ n  oo 

: ~ 6(r-- vak)(n + 1 --Ivl) ~ Vn(n). 
p = - - n  v = O  

This sum can again be transformed into 

(Gk(r) , Gk(--r)) 

+ o o  oo 

= Y c~(r-vak) Y (n+  1--1Vl)Vk(n ). 
IY=--GO ? /=  I 1~ I 
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